E4 ベクトル解析

事前に、<<Calculus`VectorAnalysis` としパッケージ を読みこんでおく。

【ベクトルの表示】

 $\stackrel{\cdot}{a}=(a_1,a_2)$ を矢印を付けたベクトルとして表示せよ。 $\stackrel{\cdot}{a}=(a_1,a_2,a_3)$ を立体矢印を付けたベクトルとして表示せよ。

ベクトル (4,3) を表示させるプログラム例

【内積・外積】

Mathematica でベクトル $a=\{a1,a2,a3\}$ と $b=\{b1,b2,b3\}$ の内積は a.b である。 外積は Cross[a,b] とする。

$$\vec{a}=(a_1,a_2,a_3)$$
, $\vec{b}=(b_1,b_2,b_3)$, $\vec{c}=(c_1,c_2,c_3)$ のとき 内積 $\vec{a}\cdot\vec{b}$ 外積 $\vec{a}\times\vec{b}$

を求めよ。また

スカラー 3 重積
$$(a,b,c) = a \cdot (b \times c)$$

ベクトル 3 重積 $[a,b,c] = a \times (b \times c)$

を求めよ。

ベクトル a, b, c について、次を証明せよ。
$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$$
$$\|a \times b\|^2 = \|a\|^2 \|b\|^2 - (a \cdot b)^2$$

【ベクトルの微分】

ベクトル
$$\dot{A} = (A_x, A_y, A_z) = A_x \dot{i} + A_y \dot{j} + A_z \dot{k}$$
 の微分 $d\dot{A}$ は

 $d\vec{A} = dA_x \vec{i} + dA_y \vec{j} + dA_z \vec{k}$ で定義される。

$$\vec{A} = \vec{A}(t) = A_x(t)\vec{i} + A_y(t)\vec{j} + A_z(t)\vec{k}$$
 のとき、 $\frac{d}{dt}\vec{A}(t)$, $\frac{d^n}{dt^n}\vec{A}(t)$ を求める。

$$r = (\cos t, \sin t, \frac{t}{4})$$
 のときの速度ベクトル、加速度ベクトルを求めよ。 $a = (3t^2, t, -t^3), \quad b = (t, -2t^3, t^4)$ のとき、 $(a \cdot b)', \quad (a \times b)'$ を求めよ。

【ベクトルの積分】

2 つのベクトル
$$\vec{A} = \vec{A}(t)$$
, $\vec{B} = \vec{B}(t)$ が t の関数で $\frac{d\vec{A}}{dt} = \vec{B}$ のとき、 \vec{A} の不定積分は $\int \vec{A}dt = \vec{B} + \vec{C}$ (\vec{C} は定ベクトル) である。 $\vec{A} = \vec{A}(t) = A_x(t)\vec{i} + A_y(t)\vec{j} + A_z(t)\vec{k}$ の $[t_0, t_1]$ における定積分は $\int_{t_0}^{t_1} \vec{A}(t)dt = \left(\int_{t_0}^{t_1} A_x(t)dt\right)\vec{i} + \left(\int_{t_0}^{t_1} A_y(t)dt\right)\vec{j} + \left(\int_{t_0}^{t_1} A_z(t)dt\right)\vec{k}$ である。

$$a = (3t^2, t, 1 - 4t^3)$$
 について、次の積分を求めよ。
$$\int a dt \qquad \int_1^2 a dt \qquad \int a \times a' dt$$

【スカラーの勾配 grad】

スカラー関数
$$\mathbf{j} = \mathbf{j}(x, y, z)$$
 に対して $\nabla \mathbf{j} = \frac{\partial \mathbf{j}}{\partial x} \dot{i} + \frac{\partial \mathbf{j}}{\partial y} \dot{j} + \frac{\partial \mathbf{j}}{\partial z} \dot{k}$

Mathematica では、f[x,y,z] に対して Grad[f,Cartesian[x,y,z]] で得られる。

$$p=(x,y,z)$$
 と スカラー関数 $r=\sqrt{x^2+y^2+z^2}$ について次を示せ。
$$\nabla r=\frac{p}{r},\quad \nabla r^n=nr^{n-2}p,\quad \nabla \left(\frac{1}{r}\right)=-\frac{p}{r^3}$$

【スカラーのラプラシアン】

スカラー関数
$$\mathbf{j} = \mathbf{j}(x, y, z)$$
 に対して $\Delta \mathbf{j} = \nabla^2 \mathbf{f} = \frac{\partial^2 \mathbf{j}}{\partial x^2} + \frac{\partial^2 \mathbf{j}}{\partial y^2} + \frac{\partial^2 \mathbf{j}}{\partial z^2}$

Mathematica では、 f[x,y,z] に対して Laplacian[f,Cartesian[x,y,z]] で得られる。

$$\mathbf{j} = x^3 yz - 2y^2 z^3 + 4xy^2$$
 のとき $\Delta \mathbf{j}$ を求めよ。

【ベクトルの発散 div】

ベクトル関数
$$\vec{A} = \vec{A}(x, y, z) = A_1 \vec{i} + A_2 \vec{j} + A_3 \vec{k}$$
 に対して
$$div\vec{A} = \frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z}$$

形式的には、
$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$
 とみなして $\operatorname{div} \dot{A} = \nabla \cdot \dot{A}$ である。

Mathematicaでは、 $g = \{g1[x,y,z],g2[x,y,z],g3[x,y,z]\}$ に対してDiv[g,Cartesian[x,y,z]] とする。

$$\vec{A} = y\vec{i} + 2xz\vec{j} + ze^x\vec{k}$$
 のとき、 $div\vec{A}$ を求めよ。

【ベクトルの回転 rot あるいは curl】

ベクトル関数
$$\vec{A} = \vec{A}(x, y, z) = \vec{A}, \vec{i} + \vec{A}, \vec{j} + \vec{A}, \vec{k}$$
 に対して

$$rot \vec{A} = \left(\frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z}\right) \vec{i} + \left(\frac{\partial A_1}{\partial z} - \frac{\partial A_3}{\partial x}\right) \vec{j} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \vec{k}$$

形式的には、
$$rot\vec{A} = \nabla \times \vec{A}$$

$$= (\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}) \times (A_1\vec{i} + A_2\vec{j} + A_3\vec{k})$$

あるいは
$$= \overline{i} \times \frac{\partial \overrightarrow{A}}{\partial x} + \overline{j} \times \frac{\partial \overrightarrow{A}}{\partial y} + \overline{k} \times \frac{\partial \overrightarrow{A}}{\partial z}$$

Mathematicaでは、g = {g1[x,y,z],g2[x,y,z],g3[x,y,z]} に対して Curl[g,Cartesian[x,y,z]] とする。

$$a = (x^3y, z^5, xy^3z^4)$$
 のとき $rot a$ を求めよ。

任意の微分可能なベクトル場 a, b と任意の微分可能なスカラー場 , について次を証明せよ。

- (1) $\nabla \times (a+b) = \nabla \times a + \nabla \times b$
- (2) $\nabla (a \cdot b) = (a \cdot \nabla)b + (b \cdot \nabla)a + a \times (\nabla \times b) + b \times (\nabla \times a)$
- (3) $\nabla \cdot (a \times b) = b \cdot (\nabla \times a) a \cdot (\nabla \times b)$
- (4) $\nabla \times (a \times b) = (b \cdot \nabla)a (a \cdot \nabla)b + a(\nabla \cdot b) b(\nabla \cdot a)$
- (5) $\nabla \times (\nabla \times a) = \nabla (\nabla \cdot a) \nabla^2 \cdot a$
- (6) $\nabla \times (\mathbf{f}a) = \nabla \mathbf{f} \times a + \mathbf{f}(\nabla \times a)$
- (7) $\nabla (\mathbf{f} + \mathbf{j}) = \nabla \mathbf{f} + \nabla \mathbf{j}$
- (8) $\nabla (\mathbf{f}\mathbf{j}) = \mathbf{f}\nabla \mathbf{j} + \mathbf{j}\nabla \mathbf{f}$

- (9) $\nabla \cdot (\nabla \mathbf{f} \times \nabla \mathbf{j}) = 0$
- (10) $rot(grad \mathbf{f}) = \nabla \times \nabla \mathbf{f} = 0$
- (11) $div(rot \ a) = \nabla \cdot (\nabla \times a) = 0$

【接ベクトル・法ベクトル・弧長】

平面曲線あるいは空間曲線 $C = \{p(t) | t \in [\boldsymbol{a}, \boldsymbol{b}]\}$ が

$$p(t) = (x(t), y(t))$$
 あるいは $p(t) = (x(t), y(t), z(t))$

と表わされているとする。<u>接ベクトル</u>(速度ベクトル)は

$$p'(t) = (x'(t), y'(t))$$
 あるいは

である。 $p'(t_0) \neq 0$ のとき、曲線 C は $p(t_0)$ で正則であるという。

平面曲線の場合は、曲線 C が $p(t_0)$ で正則のとき、 $p(t_0)$ において

接線に垂直な直線(法線)が存在し、法線方向のベクトルを法ベクトルという。

空間曲線の場合は、曲線 C が $p(t_0)$ で正則のとき、 $p(t_0)$ において接線に垂直な平面 (法平面)が存在する。

曲線 $C = \{p(t) | t \in [\boldsymbol{a}, \boldsymbol{b}]\}$ の長さは、

$$L(C) = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$
 あるいは

$$L(C) = \int_{0}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt$$

である。p'(t) = (x'(t), y'(t)) より、

$$|p'(t)| = \sqrt{x'(t)^2 + y'(t)^2}$$
 $\text{ about } |p'(t)| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}$

を用いると、弧長 $L(C) = \int_a^b p'(t) dt$ を得る。

曲線 $C = \{p(t)\}$ において、 t のある値、例えば 0 から、 t までの弧長をs(t) とする :

$$s(t) = \int_0^t p'(t) dt$$

これを弧長関数という。 $\mathbf{s}=\mathbf{s}(\mathbf{t})$ の逆関数 $\mathbf{t}=\mathbf{t}(\mathbf{s})$ を考えることによって 曲線 \mathbf{C} が p(t)=p(t(s)) のように、弧長 \mathbf{s} をパラメータとして採用できる。 ここで、 |p'(s)|=1 が成り立つ。

【曲率・フルネの公式 平面曲線の場合】

弧長をパラメータとする曲線 $C = \{p(s)\}$ を考える。

$$e_1(s) = p'(s)$$

とおく。 $e_1 \cdot e_1 = 1$ だから、s で微分すると

$$\frac{de_1}{ds} \cdot e_1 = 0 \qquad \dots (1)$$

となる。これは $\frac{de_{\scriptscriptstyle 1}}{ds}$ が $e_{\scriptscriptstyle 1}$ に垂直または 0 であることを意味する。そこで

 $e_{\scriptscriptstyle 1},e_{\scriptscriptstyle 2}$ が右手系の正規直交系になるように $e_{\scriptscriptstyle 2}$ をとる。従って

$$e_1 \cdot e_2 = 0$$
, $e_2 \cdot e_2 = 1$... (2)

がなりたつ。(1) から

$$\frac{de_1(s)}{ds} = \mathbf{k}(s)e_2(s)$$

となる。 $\mathbf{k}(s)$ は曲線 \mathbf{C} 上の関数で、 \mathbf{C} の<u>曲率</u>という。 \mathbf{e}_2 は \mathbf{C} の<u>単位法線</u>

ベクトルという。(2) から

$$\frac{de_1}{ds} \cdot e_2 + e_1 \cdot \frac{de_2}{ds} = 0 \qquad \dots (3)$$

$$\frac{de_2}{ds} \cdot e_2 = 0$$

となるので、 $\frac{de_2}{ds}$ は e_2 に直交し、

$$\frac{de_2}{ds} = le_1$$

と書けるが、(3) より $\mathbf{k} + l = 0$ となり、 $l = -\mathbf{k}$ 即ち

$$\frac{de_2}{ds} = -\mathbf{k}e_1$$

である。まとめると次のフルネの公式を得る。

$$\begin{cases} e_1' = 0e_1 + \mathbf{k}e_2 \\ e_2' = -\mathbf{k}e_1 + 0e_2 \end{cases}$$

【フルネ標構 空間曲線の場合】

弧長をパラメータとする曲線 $C = \{p(s)\}$ を考える。

$$e_1(s) = p'(s)$$

とおく。 $e_1 \cdot e_1 = 1$ だから、s で微分すると

$$2e_{1}'(s) \cdot e_{1}(s) = 0$$

より、 $e_1'(s)$ は $e_1(s)$ と直交する。 $e_1'(s)$ の長さを $\mathbf{k}(s)$ とする:

$$\mathbf{k}(s) = \sqrt{e_1'(s) \cdot e_1'(s)} = \sqrt{x''(s)^2 + y''(s)^2 + z''(s)^2}$$

空間曲線では $e_1(s)$ に直交する単位ベクトルは無数にあるので、平面曲線のように $e_2(s)$ を定めるわけにいかない。そこで $\mathbf{k}(s) \neq 0$ のとき、

$$e_1'(s) = \mathbf{k}(s)e_2(s)$$

によって $e_1(s)$ に直交する単位ベクトル $e_2(s)$ を定義する。 $e_2(s)$ を<u>主法線ベクトル</u>という。以下 $\mathbf{k}(s) \neq 0$ とする。 $e_1(s)$ に直交するもう 1 つの単位ベクトル $e_3(s)$ を外積を用いて

$$e_3(s) = e_1(s) \times e_2(s)$$

で定めて、<u>従法線ベクトル</u>という。 $\{e_1(s), e_2(s), e_3(s)\}$ を<u>フルネ標講</u>という。 さて、 $e_1' = \mathbf{k} e_2$ から $e_1' \cdot e_2 = \mathbf{k}$ である。

また $e_1 \cdot e_2 = 0$ を微分すると

$$0 = e_1' \cdot e_2 + e_1 \cdot e_2' = \mathbf{k} + e_1 \cdot e_2'$$

 $e_{\gamma} \cdot e_{\gamma} = 1$ を微分すると

$$e_2 \cdot e_2 = 0$$

である。 e_2 'は e_2 と直交することから e_1 , e_3 の一次結合である。

そこで $e_2' = ae_1 + te_3$ とおく。 $e_1 \cdot e_2' = -k$ から a = -k と分かる。よって $e_2' = -ke_1 + te_3$

を得る。次に、 $e_3 \cdot e_3 = 1$ から $e_3' \cdot e_3 = 0$ なので e_3' は e_3 と直交することから e_1 , e_2 の一次結合である。 $e_3' = \mathbf{a} e_1 + \mathbf{b} e_2$ とおく。 $e_1 \cdot e_3 = 0$ から $0 = e_1' \cdot e_3 + e_1 \cdot e_3' = \mathbf{k} e_2 \cdot e_3 + e_1 \cdot e_3' = e_1 \cdot e_3'$ なので、 $\mathbf{a} = 0$ である。また $e_2 \cdot e_3 = 0$ から $0 = e_2' \cdot e_3 + e_2 \cdot e_3' = (-\mathbf{k} e_1 + \mathbf{t} e_2) \cdot e_3 + e_2 \cdot e_3' = \mathbf{t} + e_2 \cdot e_3'$ なので $\mathbf{b} = -\mathbf{t}$ となる。以上をまとめて、フルネ・セレーの公式

$$\begin{cases} e_1' = \mathbf{k}e_2 \\ e_2' = -\mathbf{k}e_1 + \mathbf{t}e_3 \\ e_3' = -\mathbf{t}e_2 \end{cases}$$

を得る。 は<u>曲率</u>、 は<u>れい率</u>または<u>ねじり</u>という。

つる巻き線 $p(t) = (a\cos t, a\sin t, bt)$ において、弧長パラメータ s を用いて p(s)を求め、フルネ標講 $\{e_1(s), e_2(s), e_3(s)\}$ と曲率・れい率を求めよ。

次の各曲線のねじりを計算し、ねじりが最大となるtの値・最小となるtの値を 求めよ。

- (1) $x = t^2$, y = t, z = t + 1
- (2) $x = \cos t$, $y = \sin t$, $z = \sqrt{t}$
- (3) $x = e^t$, $y = \cos t$, z = t

【線積分・面積分】

 $2 ext{ 点 } P_0, P_1$ を結ぶ曲線 C に沿って、ベクトル A の接線成分 A_i に曲線素 ds をかけて P_0 から P_1 までの積分 $\int_{\mathcal{C}} A_i ds$ を C に沿った A の (線素に関する) <u>線積分</u>という。

曲面Sで定義されたベクトル関数Aにおいて、曲面Sの単位法線ベクトルをnとするとき、 $\int_S A \cdot ndS$ をA の(曲面Sに関する)**面積分**という。

【ガウス・グリーン・ストークスの定理】

ガウスの発散定理は、面積分を体積分に、あるいは体積分を面積分に変える公式であり、ストークスの定理は、面積分を線積分に、あるいは線積分を面積分に変える公式である。

V(x,y,z) を3次元空間のある領域で定義された関数とし、その領域に含まれる閉曲面Sの上およびその内部Vで連続で微分可能とすれば、

$$\iint_{S} V \cdot dS = \iiint_{V} divV dv$$

すなわち、

$$\iint (V_1 dy dz + V_2 dz dx + V_3 dx dy) = \iiint_V \left(\frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y} + \frac{\partial V_3}{\partial z} \right) dx dy dz$$

(ガウスの発散定理)

f(x,y,z), g(x,y,z) を考える領域で連続で微分可能なスカラー関数、S はその領域内の閉曲面、V をその囲む領域とすると

$$\iiint_{V} n \cdot (f\nabla g + grad \ f \cdot grad \ g)dV = \iint_{S} f \frac{\partial g}{\partial n} dS$$
(グリーンの定理)

V(x,y,z) を 3 次元空間のある領域で定義された関数とし、その領域に含まれる閉曲 面 S の上(周も含めて)で連続で微分可能とすれば、

$$\iint_{S} rot \, V \cdot dS = \int_{\partial S} V \cdot dr$$

すなわち

$$\iint_{S} \left(\left(\frac{\partial V_{3}}{\partial y} - \frac{\partial V_{2}}{\partial z} \right) dy dz + \left(\frac{\partial V_{1}}{\partial z} - \frac{\partial V_{3}}{\partial x} \right) dz dx + \left(\frac{\partial V_{2}}{\partial x} - \frac{\partial V_{1}}{\partial y} \right) dx dy \right) = \int_{\partial S} \left(V_{1} dx + V_{2} dy + V_{3} dz \right) dz dx + \left(\frac{\partial V_{2}}{\partial x} - \frac{\partial V_{1}}{\partial y} \right) dx dy$$

ガウスの発散定理を、 V が 5 平面 x=0, x=2, y=0, z=0, y+z=1 で囲まれた三角 プリズムとし、 $V=(x^2z,3y(z+1),z^2)$ の場合で確かめよ。

ストークスの定理を、S が回転放物面 $z = 1 - x^2 - y^2$ の $x \ge 0$, $y \ge 0$, $z \ge 0$ の部分とし、 V = (0, 0, yz) の場合で、両辺とも 4/15 となることで、確認すること。

参考書

小畠守生 微分幾何 放送大学教育振興会

宇田川 精解演習ベクトル解析 広川書店 田沢義彦 Mathematicaによる工科の数学 東京電機大学出版局 茂木勇・横手一郎 基礎微分積分 裳華房 John S.Robertson, 下地貞夫他訳 Mathematicaによる工科系数学 共立出版 小林道正 Mathematicaによる線形代数 朝倉書店