10. 統計算

1) A 列に出席番号 1 ~ 5 0 を付け、その成績を次表から B 列に入力する。[A1], [B1] に見出しとして"番号","成績"と入力する。データ範囲はB2..B51] となる。

	1	2	3	4	5	6	7	8	9	10
0	61	88	94	96	53	50	87	69	95	71
1	95	69	52	94	99	57	94	74	64	51
2	80	57	75	72	52	77	81	85	58	65
3	88	55	74	98	82	80	88	91	92	50
4	62	72	99	93	56	91	80	60	51	67

C 列に評価として、点数が 80 ~ 100, 70 ~ 79, 60 ~ 69, 0 ~ 59 に対してA, B, C, F (Fは不可)の成績がつくようにすること。

- B 列のデータの平均値、最大値・最小値、中央値、最頻値(E-ト)を求めること。
- B 列のデータを10点刻みで各階層にいる人数をカウントし、ヒストグラムを作成すること。
- B 列のデータを(A 列とC 列も含めて) 降順に並べ替えること。
- B 列のデータの分散と標準偏差を求めよ。

[B2]番地の値を判定するには =if(B2>=80,"A",if(B2>=70,"B",if(B2>=60,"C","F"))) である。 平均値は =average(範囲), 最大値は =max(範囲), 中央値は median, 最頻値は mode である。

A, B, C, F の頻度を集計する方法。

範囲	頻度
59	
69	
79	
100	

頻度を求めるには frequency を利用する。 集計結果を表示したい範囲を、例えば見出しを含む左表 [D1..E5] に用意する。「D2..D5」には区間の最大数を用意しておく。ここで結果を入れる範囲 E2..E5 をマウスで範囲指定し、[E2] に =frequency(データ範囲,D2..D5) を入力し、Ctrl+Shift+Enter を行う。最後に、[D2..E5]を指定して、グラフウィザードを使って ヒストグラムを描く。

データ x_1, x_2, \cdots, x_n の平均を $mean_x$ とおくとき、分散 var_x と標準偏差 ${m S}_x$ は

$$var_x = \frac{x_1^2 + x_2^2 + ... + x_n^2}{n} - mean_x^2$$
 $\mathbf{S}_x = \sqrt{var_x}$

で与えられる。 Excelでは 標準偏差は =stdevp(範囲) とする。

Mathematica では <<Statistics`Master` のように統計パッケージを読み込み、データのリストを L とおき Mean[L], StandardDeviationMLE[L] とする。

答: 分散 258.56 標準偏差 16.09

2) n 個の数データの組 (x_1,y_1) , (x_2,y_2) ,..., (x_n,y_n) を入力し、次の式により共分散 ${m s}_{xy}$ と 相関係数 C_{yy} を求める。

 $mean_x = x_i$ の平均 $\mathbf{S}_x = x_i$ の標準偏差 $mean_y = y_i$ の平均 $\mathbf{S}_y = y_i$ の標準偏差

$$\mathbf{S}_{xy} = (x_i - mean_x)(y_i - mean_y)$$
の平均 $C_{xy} = \frac{\mathbf{S}_{xy}}{\mathbf{S}_x \mathbf{S}_y}$

データ:

	1	2	3	4	5	6	7	8	9	10
Х	97	69	94	84	54	69	58	57	75	61
У	85	68	74	71	58	66	61	72	78	53

Excel では共分散は =covar(範囲、範囲) 相関係数は =correl(範囲、範囲) とする。
Mathematica では統計パッケージを読み込み、xのデータリストを A, y のデータリストを B とおいて、CovarianceMLE[A,B], Correlation[A,B] とする。

答: 101.32, 0.76

3) n 個の数データの組 $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ を入力して次の式により y の x についての回帰直線の方程式 y = a + bx の a, b を求める。それは最小2乗法による。

$$b = C_{xy} \frac{\mathbf{S}_{y}}{\mathbf{S}_{x}} = \frac{\mathbf{S}_{xy}}{\mathbf{S}_{x}^{2}}$$

 $a = mean_v - mean_x * b$

次のデータの散布図を描き、それに回帰直線を添える。

データ: (2,53), (3,67), (4,79), (5,88), (6,97), (7,107), (8,101)

Excel では $b = slope(y の範囲, x の範囲), a=intercept(y の範囲, x の範囲)とする。 Mathematica では、<math>Fit[\{\{2,53\},...,\{8,101\}\},\{1,x\},x]$ でxの一次式a + bxを得る。 答: 8.64、 41.36

4) 確率分布・確率密度関数と累積分布・累積密度関数を求め、そのグラフを描くこと。 2項分布 ポアソン分布 正規分布

2 項分布は、ある事象 A の起こる確率が p のとき、 n 回の試行で事象 A が x 回起こる確率で $f(x)={}_nC_xp^x(1-x)^{n-x}$ (x=0,1,2,...,n) で与えられる。 n,p を与えたとき、 f(x) は =binomdist(x,n,p,False) で得る。また累積確率密度は =binomdist(x,n,p,True) で得る。

ポアソン分布はその平均(=分散)を mとするとき、 $f(x) = \frac{m^x}{x!}e^{-m}$ で定義され、 =poisson(x, m, False/True) によって得る。

正規分布は
$$f(x) = \frac{1}{\sqrt{2 p s}} e^{\frac{(x-m)^2}{2s^2}}$$
 で定義され、累積確率密度は =normsdist(x, μ , , False

/True) で得る。それぞれのグラフは、(累積)分布の関数表からクラフウイザートを利用する。

Mathematica では、二項分布、ポアソン分布、正規分布はそれぞれ BinomialDistribution[n,p], PoissonDistribution[μ], NormalDistribution[μ ,]である。確率密度と累積確率密度関数は、これらの分布 dist に対して PDF[dist,x], CDF[dist,x] であり、Plot を用いてグラフが描ける。例えば標準正規分布は次で得られる。

<<Statistics`Master`

 $Plot[PDF[NormalDistribution[0,1],x],\{x,-3,3\}]$

5) 累積分布関数の逆関数の値を求める。

標準正規分布 N(0, 1)

 $[x,\infty)$ の 部分の面積が のときの x を求める。

Excel では

=normsinv(1-)

Mathematica では

<<Statistics`Master`

Quantile[NormalDistribution [0,1], 1-]

=0.025 のとき x=1.96

自由度 n のカイ2乗分布 (下図は n = 3)

 $[z,\infty)$ の 部分の面積が のときの z を求める。

Excel では

=chiinv(,n)

Mathematica では

<<Statistics`Master`

Quantile[ChiSquareDistribution[n], 1-]

n =3, =0.05 のとき z=7.815

自由度nのt 分布 (下図は n = 30)

$(-\infty, z], [z, \infty)$ の部分の面積の和が のときの t を求める。

Excel では
=tinv(,n)

Mathematica では
<<Statistics`Master`
Quantile[StudentTDistribution
[n], 1- /2]
n = 30, =0.05 のとき t=2.042