4.5 Mathematica による計算

1 1次写像
$$f: R^5 \to R^4$$
の表わす行列が $A = \begin{pmatrix} 1 & 2 & 3 & 0 & 8 \\ 3 & -1 & -5 & 2 & 1 \\ 1 & 3 & 5 & 1 & 10 \\ 0 & 1 & 2 & -1 & 4 \end{pmatrix}$ のとき, f の像と核

の基底を求める. Im(f) はAの5個の列ベクトルたち $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5$ で生成される R^4 の 部分空間であり, RowReduce[A] から 3個の(行および)列ベクトルが1次独立である ことが分かる. 例えば Solve を使うことで, $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4$ が1次独立でありことが分かり,従 ってIm(f)の基底である.

Ker(f)は $p = {}^{t}(x_1, x_2, x_3, x_4, x_5)$ とおくとき, $A {}^{t}(x_1, x_2, x_3, x_4, x_5) = {}^{t}(0, 0, 0, 0)$ の解の

全体である.

p = Array[x, {5}]
Solve[A.p == {0, 0, 0, 0}, p]

答 {x[1], x[2], x[3], x[4], x[5]} Solve::"svars": "Equations may not give solutions for all "solve" variables." (このメッセージは解が多数あるときに現れる.) Solve::"svars": "方程式はすべての "solve" 変数に対しては解を与えない可能性があ ります.(日本語キットのとき) {{x[1] -> x[3] - 2 x[5], x[2] -> -2 x[3] - 3 x[5], x[4] -> x[5]}}

$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	$\begin{pmatrix} s-2t\\ -2s-3t \end{pmatrix}$	$\begin{pmatrix} 1 \\ - \end{pmatrix}$		$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$			$\begin{pmatrix} 1 \\ -2 \end{pmatrix}$		$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$		
$\begin{vmatrix} x_2 \\ x_3 \end{vmatrix} =$	S	= s 1	+ 1	0	となり	$\operatorname{Ker}(f) = \begin{cases} f \\ f$	s 1	+t	0	$ s,t\in R$	•
$\begin{pmatrix} x_4 \\ x_5 \end{pmatrix}$	t t		J	$\left(\begin{array}{c}1\\1\end{array}\right)$			$ \left(\begin{array}{c} 0\\ 0 \end{array}\right) $		$\left(\begin{array}{c}1\\1\end{array}\right)$		

最も簡単に行列Aの表わす1次変換fの核 Ker(f) を求めるには,

NullSpace[A]

答 {{-2,-3,0,1,1},{1,-2,1,0,0}}

により,核の基底が分かる.

2 平面図形 F を 1 次変換 f で移してその像 F'を描く.まず F を構成するデータを 用意し,これらを頂点とする多角形を表示する.

さて,1次変換の表わす行列により,Fの像F'を構成するデータを計算する.

次は F と F'を同一画面に表示させる.

```
A = {{-1.2, -0.2}, {0, 1.5}};
F' = {};
For[i = 1, i <= Length[F], i++,
F' = Append[F', A.F[[i]]]]
F'
Show[Graphics[{Polygon[F], {Hue[0.3], Polygon[F']}}],
Axes -> True, AspectRatio -> Automatic]
```

上の計算で F から F'を求める部分は純関数を用いると

F'=Map[A.#&,F];

と簡単に記述できる.

行列Aを原点の周りの回転を表わすようにとる.アニメーションするプログラムは,次のようである.

アニメとして見るには,対象とするグラフィックス全体のセルを範囲指定して, Mathematicaのメニューからセル(Cell)の Annimate Selected Graphics を選択する.

3 固有値を計算する. $a = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ とし、その固有多項式と固有ベクトルを定義によって求める. $a = \{\{1, 2\}, \{3, 4\}\};$ e = IdentityMatrix[2]; ep = Det[a - x e]Solve[ep == 0, x] 答 $-2 = 5x + x^{2}$ 東 $\frac{1}{2}$ 5 33 x $\frac{1}{2}$ 5 33

Mathematicaの組み込み関数を使えばもっと簡単である.

```
CharacteristicPolynomial[a,x]
Eigenvalues[a]
```

4
$$b = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
の固有値と固有ベクトルを求める.
b = {{1, 2}, {2, 1}};
Eigensystem[b]

答 { { -1, 3 }, { { -1, 1 }, { 1, 1 } }

この出力結果から 行列 b の固有値が 1,3 であって,-1 に対する固有ベクトルが {-1,1},3 に対する固有ベクトルが {1,1} であることがわかる.

5 対称行列
$$C = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
を対角化する直交行列 T を求める.

Eigensystem による出力リストの最初は固有値なので,これを削除し,固有ベクトルの 部分をそれぞれ単位化した行ベクトルからなる行列を転置して,対角化する直交行列 T を 求める.

```
c = {{2, 0, 1}, {0, 2, -1}, {1, -1, 1}};
es = Eigensystem[c]
ev = Delete[es, 1][[1]]
t = {};
For[i = 1, i <= 3, i++,
    t = Append[t, 1/Sqrt[ev[[i]].ev[[i]]] ev[[i]]]]
t
tt = Transpose[t];
tt // MatrixForm
Transpose[tt].c.tt // MatrixForm
```

答
$$\begin{pmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

直交行列になるまで単位化しないで,固有ベクトルを列ベクトルとして並べた正則 行列 P を用いると,

```
c = {{2, 0, 1}, {0, 2, -1}, {1, -1, 1}};
es = Eigensystem[c]
ev = Delete[es, 1][[1]]
p = Transpose[ev];
p // MatrixForm
Inverse[p].c.p // MatrixForm
```

答
$$p = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix}$$

6 一般の行列 W は,必ずしも対角化できないが,適当な正則行列 P を用いて, *P*⁻¹WP が 次のようなジョルダン細胞

とよばれる行列たちを対角線に並べた行列

$$J = \begin{pmatrix} J_{\alpha} & \cdots & O \\ \vdots & \ddots & \vdots \\ O & \cdots & J_{\delta} \end{pmatrix} (W O ジョルダンの標準形)$$

に変換できる.

変換行列 P と標準形 J を求める Mathematica の組み込み関数 JordanDecomposition[w] を用いると,対称行列の直交行列による変換も解決する.

最後の入力行は,確認のためのものである.

7 2 次曲線 $x^2 - 2xy + 3y^2 + 2x - 3y = 10$ を描く.ここでは,標準形にしないで陰関数 のままで描く関数 ImplicitPlot を用いる.これを使う前に,グラフィックス関数のパッケージを開いておく.

<< Graphics`Master`
ImplicitPlot[$x^2 - 2 x y + 3y^2 + 2x - 3y == 10$,
$\{x, -5, 4\}, \{y, -5, 4\}$]

8 2次曲面を,陰関数のまま描く関数 ImplicitPlot3D は MapleV では可能であるが Mathematica には用意されていない.標準形に変形した後で,関数の形に応じて,直交座 標や極座標や媒介変数表示にして,Plot3D や ParametricPlot3D で描く.

楕円双曲面 $z=rac{x^2}{9}+rac{y^2}{25}$ は直交座標で描けるが媒介変数表示の方が分かりやすい.			
Plot3D[x ² /9+y ² /25, {x,-5,5}, {y,-5,5}]			
ParametricPlot3D[$\{3 \text{ s Cos}[t], 5 \text{ s Sin}[t], s^2\}$,			
{s, 0, 3}, {t, 0, 2 Pi}, BoxRatios -> {1, 2, 1}]			
一葉双曲面 $\frac{x^2}{9} + \frac{y^2}{4} - z^2 = 1$ は双曲線関数 Cosh, Sinh を用いる.			
<pre>ParametricPlot3D[{ 3 Cosh[s] Cos[t], 2Cosh[s]Sin[t], Sinh[s]},</pre>			
{s, -Pi/2, Pi/2}, {t, 0, 2Pi}, BoxRatios -> {1, 1, 1}]			
楕円柱面 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 方向ベクトル $p = (3, 2, 5)$			
ParametricPlot3D[{3 Cos[t], 2 Sin[t], 0} + s {3,2,5},			
{s, 0, 1}, {t, 0, 2 Pi}]			
楕円錐面 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 定点 $p = (3, 2, 5)$			
ParametricPlot3D[s $\{3,2,5\}$ + $(1 - s)\{3 \cos[t], 2 \sin[t], 0\}$,			
{s, 0, 1}, {t, 0, 2 Pi}, BoxRatios -> {1, 1, 0.5}]			
球 $x^2+y^2+z^2=1$ を描く、極座標系 $(r, heta, arphi)$ で表すと, $r=1$ である、			
<< Graphics`Master`			
SphericalPlot3D[1, {theta, 0, 2Pi}, {phi, 0, Pi}]			